Petunia Ap2-like genes and their role in flower and seed development.

نویسندگان

  • T Maes
  • N Van de Steene
  • J Zethof
  • M Karimi
  • M D'Hauw
  • G Mares
  • M Van Montagu
  • T Gerats
چکیده

We have isolated three Apetala2 (Ap2)-like genes from petunia and studied their expression patterns by in situ hybridization. PhAp2A has a high sequence similarity to the A function gene Ap2 from Arabidopsis and a similar expression pattern during flower development, suggesting that they are cognate orthologs. PhAp2B and PhAp2C encode for AP2-like proteins that belong to a different subgroup of the AP2 family of transcription factors and exhibit divergent, nearly complementary expression patterns during flower development compared with PhAp2A. In contrast, all three PhAp2 genes are strongly expressed in endosperm. The phenotype of the petunia A-type mutant blind cannot be attributed to mutations in the petunia Ap2 homologs identified in this study, and reverse genetics strategies applied to identify phap2a mutants indicate that PhAp2A might not be essential for normal perianth development in petunia. Nevertheless, we show that PhAp2A is capable of restoring the homeotic transformations observed in flowers and seed of the ap2-1 mutant of Arabidopsis. Although the interspecific complementation proves that PhAp2A encodes a genuine Ap2 ortholog from petunia, additional factors may be involved in the control of perianth identity in this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of seed mass and seed yield by the floral homeotic gene APETALA2.

APETALA2 (AP2) is best known for its role in the regulation of flower meristem and flower organ identity and development in Arabidopsis. We show here that AP2 also plays an important role in determining seed size, seed weight, and the accumulation of seed oil and protein. We demonstrate genetically that AP2 acts through the maternal sporophyte and endosperm genomes to control seed weight and se...

متن کامل

The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis.

APETALA2 (AP2) plays an important role in the control of Arabidopsis flower and seed development and encodes a putative transcription factor that is distinguished by a novel DNA binding motif referred to as the AP2 domain. In this study we show that the AP2 domain containing or RAP2 (related to AP2) family of proteins is encoded by a minimum of 12 genes in Arabidopsis. The RAP2 genes encode two...

متن کامل

Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.

APETALA2 (AP2) plays a central role in the establishment of the floral meristem, the specification of floral organ identity, and the regulation of floral homeotic gene expression in Arabidopsis. We show here that in addition to its functions during flower development, AP2 activity is also required during seed development. We isolated the AP2 gene and found that it encodes a putative nuclear pro...

متن کامل

Control of seed mass by APETALA2.

Arabidopsis APETALA2 (AP2) encodes a member of the AP2/EREBP (ethylene responsive element binding protein) class of transcription factors and is involved in the specification of floral organ identity, establishment of floral meristem identity, suppression of floral meristem indeterminancy, and development of the ovule and seed coat. Here, we show that loss-of-function ap2 mutations cause an inc...

متن کامل

The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology

have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 13 2  شماره 

صفحات  -

تاریخ انتشار 2001